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TORSIONAL VIBRATION OF CRANKSHAFTS:
EFFECTS OF NON-CONSTANT MOMENTS OF

INERTIA
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The dynamic analysis of the running hardware of reciprocating machines is complex and
is usually dealt with by using a number of simplifying assumptions. Usually an ‘‘equivalent
dynamic system’’ is built for performing the torsional analysis: such equivalent system has
inertial properties which are assumed to be constant and the variation of the actual
configuration is taken into account only by adding suitable ‘‘inertia torques’’ to the driving
torques. The aim of the present paper is that of studying the torsional vibration of
crankshafts with account taken of the variation of the geometry of the system with the
crank angle; both the free behaviour and the response to external excitation are dealt with.
The analysis is linearized and a mathematical model having the form of a set of linear
differential equations with periodic coefficients is obtained. The solution of the free
behaviour is obtained through a formulation similar to Hill’s infinite determinant, whose
truncated forms yield an approximated solution of accuracy increasing with the number
of harmonics which are retained. A similar method allows the forced response to be
computed. Two examples, one related to a simplified single-cylinder machine and one to
an actual aircraft engine, conclude the work.
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1. INTRODUCTION

The computation of dynamic stressing crankshafts is not straightforward. The geometry
of such elements couples the torsional, flexural and axial behaviour and, owing to the
presence of crank mechanisms, the configuration of the system changes in time, with a
period equal to one revolution. Also the forces acting on the system have a history which,
although being periodic, is usually quite complicated. Generally speaking, the forces can
be expressed in the form of a Fourier series, but the number of harmonics which must be
retained is quite high and consequently the possibilities of resonance are many.

The dynamic behaviour of crankshafts has been studied in great detail since the thirties
and very good and detailed handbooks on the subject are available [1, 2]. As a result of
such studies dynamic failures of crankshafts, which were plaguing internal combustion
engines, became a rare accident. Nevertheless the mathematical models usually employed
are based on a number of assumptions and an extensive experimentation is still needed
to compensate for the inadequacy of the dynamic analysis.

In many cases the most dangerous vibrations are those linked with modes which are
essentially torsional and consequently the present paper deals only with torsional vibration
of crankshafts. It must be however remembered that the very assumption of uncoupling
can be a rough approximation and that all vibration of reciprocating machines involves
all degrees of freedom of the system.
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The aim of the present paper is that of developing a computational procedure that can
overcome some of these inadequacies by using a model which is at any rate linearized and
therefore cannot take into account clearances and the presence of oil at the crank and wrist
pins. Moreover the present model is at any rate based on the uncoupling of the torsional
behaviour from axial and lateral dynamics and, when any actual system is studied, suffers
from the lack of a suitable model for damping. The last difficulty can be particularly
important in both the assessment of the stability of the system and the dynamic stressing
of the shaft.

2. ANALYSIS

2.1.        

The crankshaft and the reciprocating elements are usually reduced to a lumped
parameters ‘‘equivalent system’’ consisting of a straight massless shaft on which a number
of moments of inertia are fitted. Only the degrees of freedom related to torsional rotations
of the shaft are involved. The equivalent system of the reciprocating machine is then
coupled with the model of the devices connected to the crankshaft, which are as well
modelled as lumped parameter systems. The equivalent model is based on a straight shaft
and its torsional behaviour is consequently uncoupled from the axial and the flexural ones.

To build the equivalent model, the inertia of the reciprocating elements and that of the
cranks are lumped in a number of moments of inertia which are connected to each other
by a number of straight shafts, with circular or annular cross-section, having the actual
diameter of the shaft or a conventional reference diameter and an ‘‘equivalent’’ length
simulating the torsional stiffness of the relevant part of the shaft. To build the equivalent
model the moments of inertia of the flywheels simulating the crank-connecting rod-piston
systems and the equivalent lengths of the shaft must be computed.

Following the scheme reported in reference [3], one finds that the total kinetic energy
of the crank and the reciprocating elements (see Figure 1) is (a list of symbols is given in
the Appendix)

T= 1
2 Jequ� 2. (1)

The whole system can thus be replaced by a single moment of inertia Jeq , variable with
the crank angle u, equal to

Jeq = Jd +m1r2 + (m2 +mp )r2 f1(u)+ J0 f2(u), (2)

Figure 1. Sketch of the crank, connecting rod, piston mechanism. a= r/l, b= d/l.
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where Jd and mp are the moment of inertia of the crank and the mass of the piston and
m1, m2 and J0 are two masses and a moment of inertia used to simulate the inertial
properties of the connecting rod [3].

Functions f1(u) and f2(u) depend only on two nondimensional parameters: the ratio
a= r/l, which is always smaller than 1 and practically never exceeds 0·3, and ratio b= d/l,
which has been introduced to take into account the possibility that the axis of the cylinder
is skew with the axis of the crankshaft. Also b is usually very small (not greater than 0·045)
and in many cases vanishes. The expressions for the two functions are

f1(u)= [sin (u)+ a(sin (2u)/2 cos (g))− b(cos (u)/cos (g))]2, (3)

f2(u)= a2[cos (u)/cos (g)]2. (4)

Angles g and u are linked by the relationship

r sin (u)= d+ l sin (g): (5)

i.e.,

1/cos (g)=
1

z1− [a sin (u)− b]2
. (6)

Functions f1(u) and f2(u) can easily be expressed as Fourier series whose coefficients are
power series of parameters a and b. In such series usually six or seven harmonics in u and
powers of a and b up to fifth or sixth are considered. The expressions of the coefficients
so obtained become quickly quite intricate when the number of coefficients which are
considered is increased. At present it is not necessary to express the series for functions
f1(u) and f2(u): it is straightforward to compute numerically the equivalent moment of
inertia for a number of values of u by using equations (2–4) and then to compute a
numerical Fourier transform in the form

Jeq = Jc0 + s
r

j=1

Jcj cos ( ju)+ s
r

j=1

Jsj sin ( ju), (7)

where a number r of harmonics has been taken into consideration.
By operating in this way a large number of harmonics can be taken into consideration

and their dependence on a and b needs not to be approximated by using power series. To
obtain a very good approximation, the FFT can be computed by using 4096 or more points
without substantial increase of computation time. A comparison between the results
obtained using the traditional formulae (e.g., those reported in reference [3]) and the
numerical approach is reported in reference [4].

To take into account the phase dc between the generic crank and a fixed angular
reference, e.g., the phase of the first crank, the expression for the equivalent moment of
inertia can be transformed as

Jeq = Jc0 + s
r

j=1

J*cj cos ( ju)+ s
r

j=1

J*sj sin ( ju), (8)

where

J*cj = Jcj cos ( jdc )+ Jsj sin ( jdc ), J*sj = Jsj cos ( jdc )− Jcj sin ( jdc ). (9)
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If the cylinders are not all in the same plane, as occurs in V or radial engines, dc must
be replaced by dc − d*, where d* is the angle between the plane containing the generic
cylinder and a reference plane, e.g., that containing the first cylinder.

By introducing the imaginary unit i=z−1, equation (8) can be transformed as

Jeq = Jc0 + s
r

j=1

Aj ei ju + s
r

j=1

Bj e−i ju, (10)

where

Aj =(J*cj −iJ*sj )/2, Bj =(J*cj +iJ*sj )/2. (11)

If the angular velocity v of the crankshaft is kept constant, the crank angle u can be
expressed as

u(t)=vt+f(t), (12)

where f is an angular displacement linked with the torsional deformation of the shaft. By
assuming the latter to be the generalized co-ordinate of the crank for torsional motions,
the equation of motion obtained through the Lagrange equation is

Jeqf� + 1
2(v+f� )2 (dJeq (u)/du)=M, (13)

where the torque M is the total torque acting on the crank and includes the elastic and
damping reaction of the shaft and the forces acting on the piston.

Equation (13) is usually drastically simplified by assuming a constant value for the
equivalent moment of inertia in the first term Jeqf� , for instance the constant term Jc0 of
series (7). f� is then neglected in the sum (v+f� ) in the second term and f is neglected
in the expression for u in the derivative dJeq/du. The simplified differential equation with
constant coefficients so obtained is

J� eqf� =M− 1
2v

2[dJeq (vt)/d(vt)]. (14)

The known function of angle (vt) and hence of time appearing in the second term can
be considered as a forcing function applied to the system and can be computed either by
using the numerical values of the coefficients of the series (7) or by using the formulae for
the coefficient of the series for functions f1(u) and f2(u) reported in the literature:

1
2

v2$dJeq (vt)
d(vt) %=

1
2

v2 s
r

j=1

j [−Jcj sin ( jvt)+ Jsj cos ( jvt)]. (15)

The use of equation (14) leads to approximated results, which can be affected by large
errors, particularly when the inertia of the reciprocating masses is large but is up to now
the only viable approach when a complex system, such as a multi-cylinder engine, has to
be dealt with. Actually, there is little difficulty to assemble the equations related to the
various cranks and the other parts of the equivalent system, and to introduce also parts
connected to the crankshaft via gear trains. One of the codes which can be used for the
study of the free and forced vibrations of a system built in this way is DYNROT, finite
element code for rotordynamics developed by the authors [5].

2.2.    

To obtain the differential equation with constant coefficients (14) quite crude
assumptions have been made. To circumvent this problem the equivalent moment of
inertia, which is a function of (vt+f), can be expressed by the power series
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Jeq (vt+f)= Jeq (vt)+f
1Jeq (vt)
1(vt)

+
f2

2
12Jeq (vt)
1(vt)2 +

f3

3!
13Jeq (vt)
1(vt)3 + · · · . (16)

As a consequence, the equation of motion can be expressed in the form

f� $Jeq (vt)+f�
1Jeq (vt)
1(vt)

+f2 1
2

12Jeq (vt)
1(vt)2 +f3 1

3!
13Jeq (vt)
1(vt)3 + . . . %

+
1
2

(v+f� )2$1Jeq (vt)
1(vt)

+f
12Jeq (vt)
1(vt)2 +f21

2
13Jeq (vt)
1(vt)3 +f3 1

3!
14Jeq (vt)
1(vt)4 + . . . %=M.

(17)

Equation (17) is a non-linear differential equation with periodic coefficients in f. It tends
to the exact equation of motion of the crank system if the number of terms considered
tends to infinity. For the study of the small oscillations of the system it can be linearized,
obtaining

Jeq (vt)f� +f� v
1Jeq (vt)
1(vt)

+f
v2

2
12Jeq (vt)
1(vt)2 =−

v2

2
1Jeq (vt)
1(vt)

+M. (18)

Such linearization is performed by neglecting terms in f2, f2, f� f and f� f and allows
one to study the small motion about the condition f=0. Note that the range in which
this linearization holds becomes narrower if high frequency motions are considered, but
nevertheless always exists.

By introducing expression (10) for the equivalent moment of inertia into equation (18)
it follows that

Jc0f� +f� s
r

j=1

[Aj eijvt +Bj e−ijvt]+ if� v s
r

j=1

j [Aj eijvt −Bj e−ijvt]

−
1
2

fv2 s
r

j=1

j2[Aj eijvt +Bj e−ijvt]=−
1
2

iv2 s
r

j=1

j [Aj eijvt −Bj e−ijvt]+M. (19)

Equation (19) is the linearized mathematical model of the crank and can be assembled,
together with the other elements (beams, masses, dampers, etc.) to build the model of the
whole system by using the conventional techniques used in finite element procedures. The
resulting model of the whole system consists of a number of linear second order differential
equations with coefficients which are periodic in time with period 2p/v. The forcing terms
are themselves periodic, with the same period of the coefficients (gas compressors or
two-stroke cycle engines) or period 4p/v (four-stroke cycle engines).

The result of this assembly procedure is the following set of equations

[J ]{f� }+ s
r

j=1

[[Aj ] eijvt +[Bj ] e−ijvt]{f� }+iv s
r

j=1

j [[Aj ] eijvt −[Bj ] e−ijvt]{f� }

+[C]{f� }−
1
2

v2 s
r

j=1

j2[[Aj ] eijvt +[Bj ] e−ijvt]{f}+[K]{f}
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=−
1
2

iv2 s
r

j=1

j [{Aj} eijvt − {Bj} e−ijvt]+ {Mm}, (20)

where [J], [C], [K] and {Mm} are the usual inertia, damping and stiffness matrices and
driving torque vector obtained from the usual model with coefficients which are constant
in time. The first is always diagonal, the second is often of the same type and in most cases
the third is tridiagonal. Matrices [Aj ] and [Bj ] are diagonal matrices containing coefficients
Aj and Bj , the same coefficient are listed in vectors {Aj} and {Bj}.

From the homogeneous equation obtained by neglecting all forcing terms at the right
side of equation (19) the stability of the system can be studied. By considering also the
forcing terms it is possible to study the forced response. In all cases an approximated
solution expressed as a truncated series of trigonometric or complex exponential terms can
be assumed. The procedure is not dissimilar, although more complex, from that described
in reference [3] and [6] for the study of the flexural dynamics of anisotropic rotors.

2.3.      - 

In the literature it is possible to find the stability analysis of a simplified single-cylinder
machine made of a crank, with its connecting rod and piston, connected to a large flywheel
through a torsionally compliant shaft [7]. Let K be the stiffness of the shaft and C the
damping coefficient of a viscous damper acting on the crank and supplying a torque
proportional to its angular velocity. If the moment of inertia of the flywheel is large
enough, the system can be studied as a single degree of freedom system, constrained at
the flywheel location. The torque M which has to be introduced into the equation of
motion is

M=−Kf−C(v+f� )+Mm (vt), (21)

where f is the torsion of the shaft and Mm is the driving torque due to the pressure on
the piston. In reference [7] the length of the connecting rod is assumed to be very large
and then a= b=0. The expression of the moment of inertia is simply

Jeq = J� eq{1− o cos [2(vt+f)]}, (22)

where

J� eq = Jd +(m1 + (m2 +mp )/2)r2, o= r2(1/J�eq )(m2 +mp )/2. (23)

Upon introducing the natural frequency of the average equivalent system l0 =zK/J� eq
and the damping ratio z=C/(2zKJ� eq), the equation of motion (19) reduces to

f� [1− o cos (2vt)]+2ov2f cos (2vt)+2ovf� sin (2vt)

+2zl0(v+f� )+ l2
0f=−ov2 sin (2vt)+ l2

0Mm (t)/K. (24)

Equation (24) coincides with the equation obtained in reference [7]. In the mentioned
work the stability was studied by integrating numerically the homogeneous equation (24)
with different values of parameter o, damping ratio z and ratio l0/v. The same system has
been studied in reference [4] by using an approach similar to that described below for the
general multi-cylinder machine obtaining the same results.

2.4.  

Consider the homogeneous equation obtained by neglecting the right side of equation
(20). Its general solution can be approximated as
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{f}= s
m

k=−m

{q}k ei(l+ kv)t. (25)

The solution expressed by equation (25) tends to the exact solution when m tends to
infinity. By substituting equation (25) into the homogeneous equation of motion obtained
from equation (20), the following algebraic equation is readily obtained:

− s
m

k=−m6(l+ kv)2$[J]+ s
r

j=1

([Aj ] eijvt +[Bj ] e−ijvt)%{q}k ei(l+ kv)t7
+ s

m

k=−m 6(l+ kv)$i[C]−v s
r

j=1

j([Aj ] eijvt −[Bj ] e−ijvt)%{q}k ei(l+ kv)t7
+ s

m

k=−m 6$[K]−
1
2

v2 s
r

j=1

j2([Aj ] eijvt +[Bj ] e−ijvt)%{q}k ei(l+ kv)t7= {0}. (26)

Equation (26) can be considered an eigenproblem in l. Its solution can be performed
by harmonic balancing; the relevant computations being quite intricate but conceptually
straightforward. After harmonic balancing the following formulation of the eigenproblem
is obtained:

[−l2[J*]+ i l[C*]+ [K*]]{q*}= {0}. (27)

The size of all matrices and vectors in equation (27) is (2m+1)n, where m is the number
of harmonics which are balanced and n is the number of degrees of freedom of the system.
The augmented inertia matrix [J*] is

–– –– –– –– –– –– ––

–– [J] [B1] [B2] [B3] [B4] ––

–– [A1] [J] [B1] [B2] [B3] ––

[J*]= –– [A2] [A1] [J] [B1] [B2] –– . (28)G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

–– [A3] [A2] [A1] [J] [B1] ––

–– [A4] [A3] [A2] [A1] [J] ––

–– –– –– –– –– –– ––

In a similar way, the other matrices can be partitioned in submatrices of order n. The
generic submatrix in position pk is

[C*kk ]= i 2kv[J]+ [C]

[K*kk]=−k2v2[J]+ i kv[C]+ [K], (29)

for the submatrices on the main diagonal,

[C*pk ]= i( p+ k)v[Bk− p ], [K*pk ]=−1
2( p2 + k2)v2 [Bk− p ] (30)

if kq p and

[C*pk ]= i( p+ k)v[Ap− k ], [K*pk ]=−1
2( p2 + k2) v2 [Ap− k ] (31)

if kQ p. Note that both p and k take values between −m and m: the central submatrices
have then indices 0,0.
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By resorting to a state–space approach, the equation yielding the eigenproblem in
standard form is

det$$[J*]−1[C*]
[I]

[J*]−1[K*]
[0] %− l$[I]

[0]
[0]
[I]%%=0. (32)

From the definition of l it follows that the frequency of the free motion of the system
is its real part while the imaginary part of l is the decay rate, which must be positive to
insure stability. The fields of instability are then characterized by negative values of the
imaginary part of l.

2.5.  

The driving torque acting on the various cranks is usually expressed in the form

{Mm}= s
s

j=1

{M*mcj
} cos ( jv't)+ s

s

j=1

{M*msj
} sin ( jv't), (33)

where

{M*mcj
}= {Mmcj

cos ( jdh )+Mmsj
sin ( jdh )},

{M*msj
}= {Mmsj

cos ( jdh )−Mmcj
sin ( jdh )} (34)

and v' is equal to v in the case of gas compressors or two-stroke cycle engines or v/2
for four-stroke cycle engines. In this case angles dh are the phase angles of the first harmonic
of the driving torque, as available from the phase angle diagram.

In case v=v' and the same number of harmonics are taken for expressing the moment
of inertia and the driving torque (r= s), the two terms of the right side of equation (20)
contain the same harmonic terms. If on the contrary v=2v', as occurs in the case of
four-stroke cycles engines, some modifications are needed. As a first point the series for
the moments of inertia of the cranks can be rewritten by using v' as the fundamental
frequency simply by setting new values of Aj and Bj equal to zero for odd values of j and
equal to the previously defined Aj/2 and Bj/2 for even values of j. If rQ s/2 a number of
coefficients equal to zero are then inserted.

The forced response of the system can be expressed in the form

{f}= s
m

k=−m

{q}k eikv't. (35)

Note that in this case the argument of the exponential is imaginary instead of being
complex and the response can be expressed directly by using sines and cosines. Even if this
implies rewriting equation (20) in a different form, it has the advantage of yielding results
in the form of the amplitudes of the ‘in phase’ and ‘in quadrature’ components of the
various harmonics in a way immediately comparable with the results of the traditional
approach. Equation (20) can then be rewritten as

0[J]+ s
r

j=1

[[Jcj ] cos ( jv't)+ [Jsj ] sin ( jv't)]1{f� }
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+0[C]−v' s
r

j=1

j [[Jcj ] sin ( jv't)− [Jsj ] cos ( jv't)]1{f� }
+0[K]−

1
2

v'2 s
r

j=1

j2 [[Jcj ] cos ( jv't)+ [Jsj ] sin ( jv't)]1{f}

=v'2 s
r

j=1

j [[Jcj ] sin ( jv't)− [Jsj ] cos ( jv't)]+ {Mm}. (36)

Note that equation (36) is general, as in the case of two stroke cycle engines all
coefficients of odd harmonics vanish and then the fundamental frequency is 2v'.

The solution of equation (36) can be approximated as

{f}= s
m

k=1

{fck} cos (kv't)+ s
m

k=1

{fsk} sin (kv't). (37)

Again the solution tends to the exact one when m tends to infinity. By substituting
equation (37) into the equation of motion (36), an algebraic equation is readily obtained.
By balancing the various harmonics in cos (kv't) and sin (kv't), it is possible to obtain
the equation

[K*dyn ]{f*}= {M*}. (38)

If it is assumed that r= s=m, i.e., that the same number of harmonics is used to express
the moments of inertia (with fundamental frequency v'), the driving torque and the
response, the matrices and vectors in equation (38) have a size equal to 2mn. The set of
equations (38) can be partitioned into m subsets as

[K*11] [K*12] [K*13] · · · [K*1m ] {f*1 } {M*1 }
[K*21] [K*22] [K*23] · · · [K*2m ] {f*2 } {M*2 }

g
G

G

G

G

F

f

h
G

G

G

G

J

j

[K*31] [K*32] [K*33] · · · [K*3m ] {f*3 } = {M*3 ] , (39)G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j
...

...
...

.. .
...

...
...

[K*m1] [K*m2] [K*m3] · · · [K*mm ] {f*m } {M*m }

where

[K*kk ]=$−v'2k2[J]+ [K]
−v'k[C]

v'k[C]
−v'2k2[J]+ [K]% (40)

and

[K*pk ]=$ u[Jc ]=k− p=

3 u[Js ]=k− p=

2u[Js ]=k− p=

u[Jc ]=k− p= %. (41)

The upper sign is used if kq p and the lower one if kQ p and

u=(v'/2)[k2 − k(k− p)+ (k− p)2]. (42)
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The vectors are

{f*}k =6{fc}k

{fs}k7, {M*}k =6−v'2k{Js}k + {Mc}k

v'2k{Jc}k + {Ms}k 7. (43)

If the equivalent moment of inertia is assumed to be constant, the set of equations (38)
uncouples into m independent sets of 2n equations, each one supplying the response to
a particular harmonic. They are identical to those obtained through the conventional
approach [3].

Some simplifications are however always possible. In the case of four-stroke cycle
engines the sets of equations related to the odd harmonics can be uncoupled and solved
separately. The set (38) can thus be written to include only even harmonics (i.e., p and
k even).

In the case of two-stroke cycle engines and compressors, only even harmonics exist and
the set (38) can be greatly simplified. Note that also in this case equation (38) and those
following hold only if v'=v/2; if other choices are made the coefficients must be
modified.

3. EXAMPLES

3.1.  - 

Consider a simplified single-cylinder machine of the same type described in section 2.3.,
but release the assumption that the connecting rod is very long (i.e., that a is close to zero).
Without lack of generality, assume that the moment of inertia J0 is negligible: i.e., that
the mass distribution of the connecting rod is such as to be modelled as two masses located
at the crank and wrist pins. Under this assumption, the dynamic behaviour of the system is
function of a small number of parameters, namely o, z=C/(2zKJ�eq ), v/l0 =v/zK/J�eq ,
a and b. Note that now the definition of J�eq given in equation (23) does not hold, while
the definition of o is still valid.

Even if detailed study of the stability is not possible in general, owing to the increased
number of parameters, some conclusions can be drawn. The decay rate T(l) is plotted as
a function of the nondimensional speed in Figure 2 for o=0·4 and b=0 and various
values of the damping ratio z. Two values of a, namely 0 and 0·2, have been considered.

If a=0 the model is identical to that studied in references [4, 7] and, if no damping is
considered, it shows the two fields of instability for v/l0 equal to about 1 and 0·5 already
identified in reference [7]. As is well known, the first of the two is far stronger, in the sense
that the instability range is larger, the negative value of the decay rate has a greater
absolute value and a greater damping is required to overcome the instability.

If a is not equal to zero, the picture changes as a third field of instability is present at
v/l0 equal to about 2/3. This new instability is weaker than that occurring at v/l0 =1,
but far stronger than that occurring at v/l0 =0·5. Although not visible in the figure, an
analysis of the numerical results shows that other very weak instability ranges can occur
at lower values of v/l0 (1/3, 1/4, etc.), but a very small damping is able to make them
disappear.

The instability ranges are shown in Figure 3 for systems with different values of o. The
curves are characterized by different values of a. The largest field, starting at v/l0 =1, is
not much affected by the value of a (the curves are for a=0, 0·25, 0·50). The field starting
at v/l0 =2/3 exists only if a$ 0 and is very sensitive to the value of the parameter (the
curves are for a=0·1, 0·2, 0·3, 0·4 and 0·5). While the other fields move slightly to the
left with increasing a, the present one widens. The last field, starting at v/l0 =1/2, is very
narrow and again has a weak dependence on the parameter a.
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Figure 2. Minimum value of the decay rate as function of the non-dimensional speed for systems with different
damping (o=0·4). Simplified model with a=0 (a) and model with a=0·2 (b) In the second case a new field
of instability is present. All values of damping are lower than that needed to make the larger field of instability
disappear. All curves have been obtained with b=0.

The results here obtained, although without considering the effects of J0 and b, are
nevertheless quite general: the important fact is the presence of harmonics other than the
second one in the series for Jeq and not the exact value of the parameters. It must however
be remembered that the presence of b would introduce sine terms, and not just cosine
terms, into the series.

Figure 3. Boundaries of the fields of instability for the three fields identified in Figure 2 with z=0. The values
of a considered are: 0, 0·1, 0·2, 0·3, 0·4 and 0·5 for the field on the left, 0·1, 0·2, 0·3, 0·4 and 0·5 for the central
field and 0, 0·25 and 0·5 for the field on the right.
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Figure 4. Equivalent system of a four-cylinder engine driving an aerial propeller. Inertia at node 6 models
the accessories driven through a gearbox.

3.2.    - 

Consider a flat four-cylinder, four stroke cycle engine Lycoming O-360-A3A coupled
to a Sensenich 76EM8S5-0-58 fixed pitch propeller as used on the four-seater light aircraft
Robin DR400/180 R. All geometrical and inertial data of the machine relevant for the
analysis of the dynamic torsional behaviour of the crankshaft have been either computed
or measured in reference [8]. In particular, the stiffness of the various sections of the shaft
were measured on a shaft which was discarded from service. The rotating and reciprocating
parts were modelled as an equivalent system with six degrees of freedom (see Figure 4).
The inertia at node 1 simulates the propeller while that at node 6 simulates the accessories
and their gear train.

The coefficients of the harmonics of driving torque were evaluated as functions of the
mean indicated pressure pmi by using the formula [2]

Mmk = pmirA25/[50z(2/k)+5k2]. (44)

The disadvantage of this approach is that the formula supplies the coefficients of the
harmonics but not their phases. However, in reference [2] the phases of the harmonics with
frequencies 2, 4, 6 and 8 v' are stated and this allows one to add the torques due to the
inertia of the reciprocating parts to those due to the pressure of the working fluid. In
reference [8] several computations were run with different laws linking the mean indicated
pressure with the speed. Here just one of the cases studied will be reported. The mean
indicated pressure is then expressed as

pmi =−3·2283+4·1081×10−2v−1·5402×10−4v2 +2·2366×10−7v3.

In a similar way, the damping of the system was evaluated by adding a viscous damper
in each crank, with a coefficient equal to

Ceq = k'Ar2, (45)

where the coefficient k' was assumed as 27150 Nsm−3. The formula and the numerical
values were taken from reference [2]. In a similar way also the damping of the propeller
was considered.

All computations were performed by using the DYNROT 6·0 code, developed by the
authors, in which the formulation to take into account the variation in time of the
equivalent moment of inertia was added.

The first step in the analysis is the computation of the natural frequencies of the
constant-inertia equivalent system. The following values were obtained for the first two
non-zero natural frequencies: ln1 =1900 rad/s=302 Hz, ln2 =5705 rad/s=908 Hz.
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The forced torsional response, in terms of dynamic shear stresses in the propeller shaft
and in the journal of the central bearing, computed using the conventional approach, is
shown in Figure 5 (dashed lines). A sharp peak, corresponding to the resonance of the
16th harmonic of the driving torque, occurs in the working range, at 237 rad/s (2270 rpm).
This speed is roughly in the centre of the range 2150–2350 rpm at which continuous
running is prohibited by the manufacturer.

For the study of the stability of the system, a plot of the natural frequencies and of the
decay rates versus the speed must be plotted. Alternatively it is possible to plot a root locus.
The first is shown in Figure 6 while the second is in Figure 7. Note that while in the first
one the complex frequency l is reported, in the second one the Laplace variable s=il has
been plotted, as customary. Both have been plotted by taking into consideration four
harmonics of the equivalent moment of inertia: as the number of master degrees of freedom
is six; all relevant matrices have 54 rows and columns and a set of eigenproblems of order
108 (in the state space) has been solved.

In Figure 6 a number of branches starting from the origin is visible. They are linked
with rigid-body modes and actually the corresponding eigenvectors are constant. More
precisely, as each eigenvector is made of parts corresponding to the various harmonics,
they are formed by parts which are constant, harmonic by harmonic. At low speed each
mode has a positive decay rate (or negative real part of s) and hence they are stable. At
increasing speed some of them show an unstable nature, with negative decay rate, even
if the absolute value of the decay rate is very small (of the order of 0·2 s−1). This instability
has nothing to do with a possible torsional instability of the system, as the mode is not
a torsional vibration. It is the opinion of the authors that it is simply linked with the
presence of a residual periodic irregularity, i.e., non-constant angular velocity, which is
present in spite of the large moment of inertia of the propeller. The absolute value is so
low that it appears to be simply linked with numerical approximations.

All other modes have positive decay rates, as could be expected because the engine works
in a speed range which is far lower than the ranges in which instability can be expected
[7]. When the speed tends to zero, the frequency of the torsional vibration does not tend
to the above mentioned values obtained from the simplified model. Actually, the moment
of inertia of the crank-piston systems depends on the position of the shaft, varying for

Figure 5. Forced torsional response in terms of dynamic stressing of the crankshaft. Results for the propeller
shaft (a) and the central journal (b), computed using both the conventional (– – –) and present (——) approaches.
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Figure 6. Plot of the natural frequencies (a) and of the decay rates (b) as functions of the speed.

example between 0·01253 kgm2 and 0·017375 kgm2 (with a value of J̄eq =0·014637 kgm2)
for the first crank. Correspondingly the natural torsional frequency at standstill varies
between 1751 and 2044 rad/s for the first mode (1899 rad/s computed with the simplified
model). All the values obtained lay within these ranges, even if to get exactly all the span,
an infinity of harmonics needs to be computed. As an example the ranges obtained with
five harmonics for the first and second mode are respectively 1797–2026 rad/s and
5384–6101 rad/s. With 10 harmonics (involving the solution of an eigenproblem or order
252) the ranges are respectively 1790–2037 rad/s and 5358–6129 rad/s. Understandably, the
convergence to the full ranges is slow.

The decay rates of all harmonics for the second and third modes are of about 35 s−1,
with small variations with the engine speed, showing a good stability of the system.

Finally, the forced response was computed again, with account taken of the variability
of the equivalent moment of inertia. The results, in terms of total dynamic shear stresses



    149

in the propeller shaft and the journal of the central bearing, obtained by considering 20
harmonics of the moment of inertia, are reported in Figure 5 (full lines). The results do
not differ much from those obtained by using the conventional procedure, but this cannot
be generalized, as the engine studied is relatively slow and has a very stiff shaft (also owing
to the general configuration) and light reciprocating parts, leading to high values of the
torsional natural frequencies. An interesting feature is however a shift of the resonance
peaks.

4. CONCLUSIONS

The formulation presented here for the study of the free behaviour of the system allows
one to compute the natural frequencies with a greater precision, at the cost of an increase
of the size of the eigenproblem to be solved. Instead of dealing with matrices with a number
of rows and columns smaller or slightly higher than 10, an eigenproblem of an order which
can be easily of several hundreds has to be solved at each value of the speed. However
with the use of computers, even a PC machine, this can be a minor problem: all
computations needed for the examples shown were performed with use of never more than
several minutes of computer time on a 486 class machine.

An example dealing with a simplified single cylinder machine showed that the instability
ranges obtained in the literature [7], obtained by using simpler models, were obtained with
minor modifications, but a new field of instability, up to now unmentioned, was found.
This instability occurred at a speed corresponding to about 2/3 of the natural frequency
of the system: i.e., on the intersection of the line l=3v/2 on the Campbell diagram. While
weaker than that found at a speed equal to the natural frequency (on the line l=v), it
is far stronger than that occurring on the line l=2v.

The analysis of the stressing of the shaft due to the forcing functions acting on the
pistons is simpler. In this case the difference with the conventional approach is less marked
in terms of computation time. The relevant equations are similar, but while in the usual
computations the sets of equations yielding the response to the various harmonics of the

Figure 7. Root locus. Note that the Laplace variables s=il has been used instead of the complex frequency
l as in Figure 6.
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forcing function are uncoupled, the present computation is based on a set of equations
all coupled with each other. In the case of the four-cylinder engine shown, at each speed
a set of 240 equations has been solved (20 harmonics in sine and cosine on a system with
six degrees of freedom), which is a trivial task for any modern computing machine.

The example shows that the difference with the conventional computation is not great,
with a certain increase of the stressing and a shift of the frequencies at which the peaks
occur. This result however cannot be generalized, and there is the possibility that for a
fast machine or a machine with greater reciprocating masses the two approaches give more
different results.

The equations obtained are now implemented in a computer code which allows
performance of the flexural, axial and torsional dynamic analysis of rotors of many
different types.
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APPENDIX: SYMBOLS

K stiffnessd eccentricity of the cylinder
i imaginary unit (i=z−1) [K] stiffness matrix
l length of connecting rod {M} torque vector

Mm driving torquem number of harmonics for the response
dc phase angle of the crankn number of degrees of freedom

pmi mean indicated pressure a parameter (a= r/l)
r crank radius, number of harmonics for b parameter (b= d/l)

the equivalent moment of inertia o parameter defined in equation (23)
dh phase angle of the first harmonics number of harmonics for the driving
u crank angletorque

t time l frequency, complex frequency
A area of the piston f angular displacement
C damping coefficient v rotational speed
[C] viscous damping matrix Subscripts
[I] identity matrix eq equivalent
J moment of inertia I imaginary part
[J] inertia matrix R real part


